US ERA ARCHIVE DOCUMENT

Guidelines for the Bioremediation of Freshwater Wetlands

Albert D. Venosa

U.S. EPA

National Risk Management Research

Laboratory

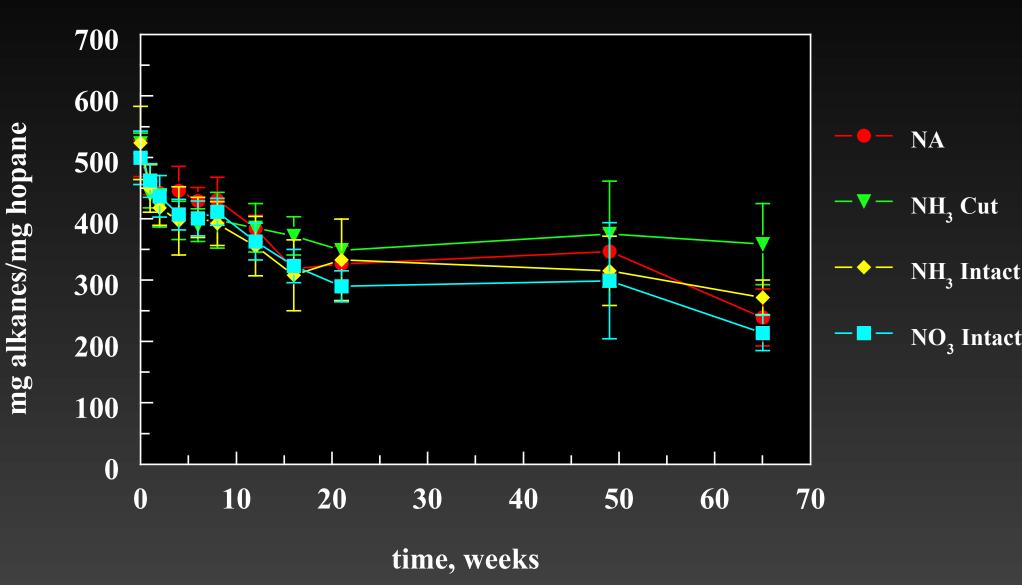
Cincinnati, OH 45268

Topics to be discussed

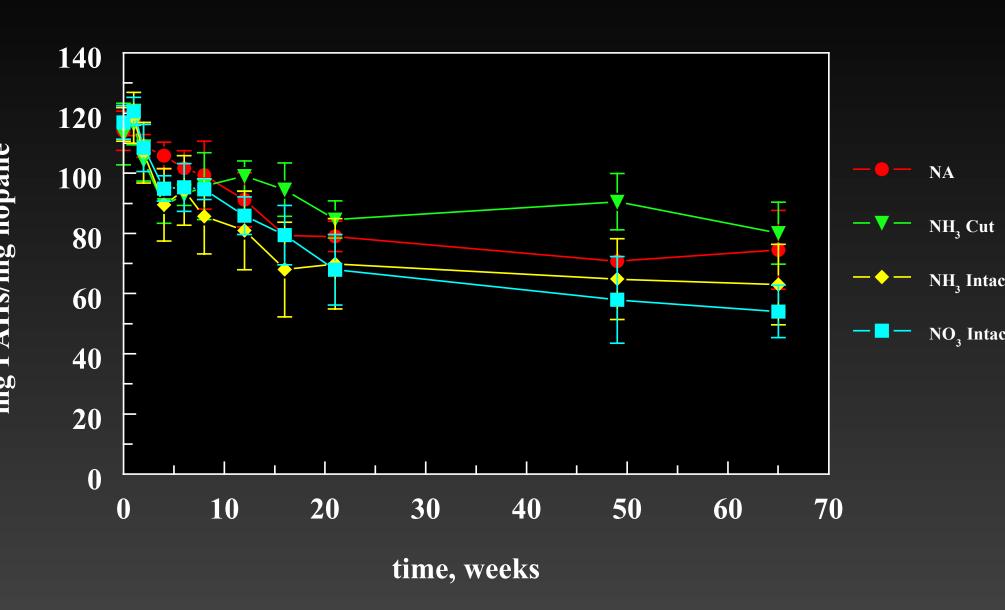
- Wetland environment
- Summary of St. Lawrence River Study
- Bioremediation on water
- Guidance for implementation of bioremediation
 - Decision tree
 - Pretreatment assessment
 - Bioremediation planning
 - Implementation, assessment, termination
 - Conclusions

Wetland Environment

- Freshwater oil spills most likely to affect marshes and wetlands
- Only research data available is ORDfunded study in Quebec on St. Lawrence River
 - Multiple plots studying effect of ammonium and nitrate addition with and without plants


St. Lawrence River Study

- Oil penetration very low due to wet, clayey soil (typical of all wetlands)
 - Oil raked into top 3 cm to assure penetration
- Oxygen became limiting a few mm below ground surface
- Very quiescent, very little wave action
- Tidal effects


Treatments Studied

- Natural attenuation (no amendments)
- Ammonia addition with plants cut back to suppress growth
- Ammonia addition with plants intact
- Nitrate addition with plants intact

Change in Total Alkanes Normalized to Hopane

Change in Total PAHs Normalized to Hopane

Summary St. Lawrence Findings

- No treatment differences noted for biodegradation of total alkanes and PAHs except for plots with plants cut
 - Highly suggestive that oxygen was limiting
 - Presence of healthy plant roots may be important for biodegradation to take place
 - More physical loss of oil from plots with plants cut back

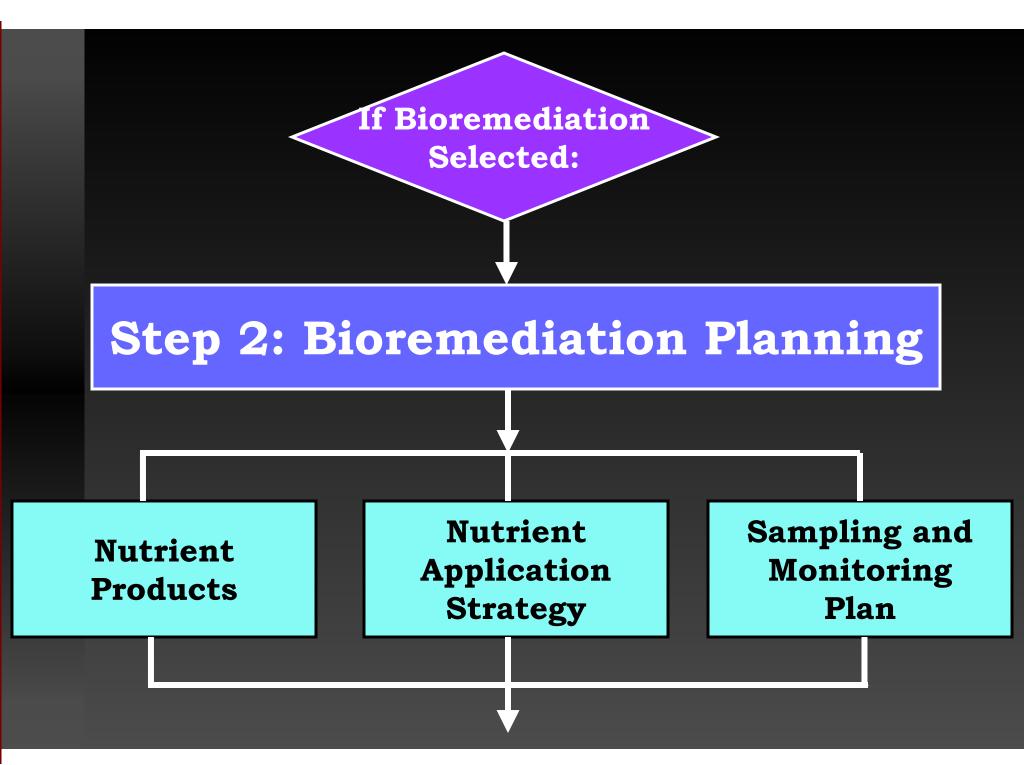
Conclusions from St. Lawrence Study

- Biostimulation may not be appropriate for rapidly degrading oil in a contaminated freshwater wetland if significant oil penetration has taken place
- Lack of oxygen is the most likely cause for the retarded biodegradation in a wetland where oil has penetrated to any significant depth
- If restoration is the primary goal, fertilizer addition might be appropriate

Bioremediation on Water

- To be successful, all amendments must stay with the slick and not disperse
 - This is extremely unlikely, even with oleophilic fertilizers
 - Therefore, bioremediation on water not considered viable

Guidance for Implementation of Bioremediation in the Field


Decision Tree for Selection and Application of Bioremediation

Step 1: Pretreatment Assessment

Oil Type & oncentration

Background Nutrient Content

Shoreline Type Other Site Characteristics

Step 3: Implementation, Assessment, and Termination

Analysis of Biodegradation and Physical Loss

Toxicological and Ecological Analysis

- Oil type
 - Higher API gravity (> 30°) oils easier to degrade
 - Order of sensitivity: n-alkanes>branched alkanes>low MW PAHs>cyclic alkanes>high MW PAHs>resins/asphaltenes

- Oil concentration
 - Low (10s to 100s of mg/kg): less likely to be limited by N and P; thus, natural attenuation may be appropriate
 - Intermediate (~1-80 g/kg): likely to be limited by N and P, may or may not need nutrient addition
 - High (> 80 g/kg or higher): may be inhibitory or toxic

- Background nutrient content
 - Determine background concentration of N, P
 - Determine historical range of N, P at the spill site
 - ◆ If low, biostimulation likely to be effective
 - If high, consider natural attenuation

- Types of shorelines
 - High energy not amenable: washout too rapid and waves scour organisms from substrate
 - Low energy favorable for nutrient application, must be aware of possible oxygen deficiency
 - Medium and coarse sandy beaches most favorable
 - Wetlands usually oxygen limited, not nutrient limited

- Other Factors
 - Climate: cold temperatures slow the process
 - Greater viscosity
 - Slower biodegradation due to slower metabolic rates
 - Prior exposure to oil: if none, lag or adaptation period greater

- Treatability studies and considerations
 - Tiered screening protocol for testing products and listing on the NCP Product Schedule
 - Microcosm tests: batch and semi-continuous or continuous flow
 - Nitrate- vs. Ammonium-based fertilizers
 - Human and ecotoxicity impacts
 - Environmental factors
 - Water soluble fertilizers
 - ◆ Slow-release fertilizers
 - Oleophilic fertilizers

Application Strategy

Optimal nutrient concentration

Frequency of application

Methods of application

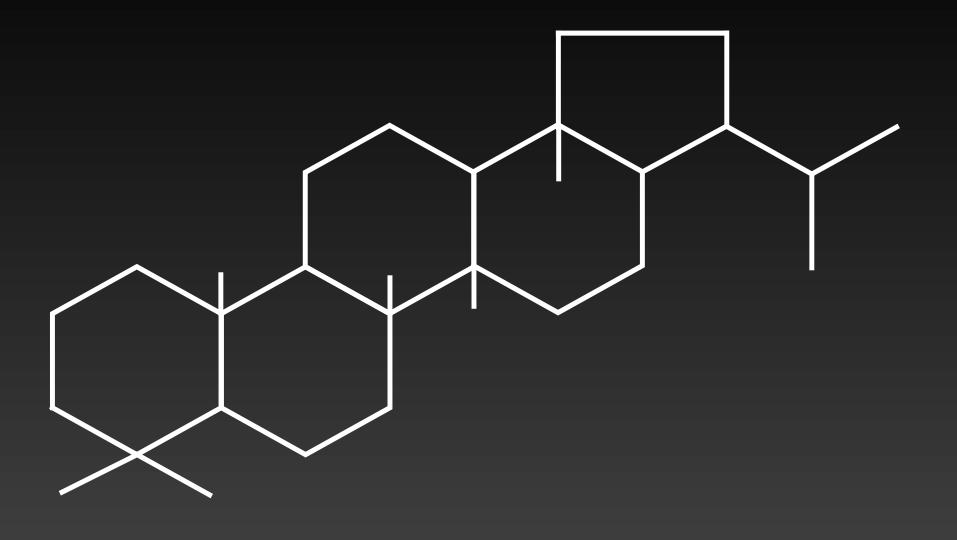
- Optimal nutrient concentration
 - Microcosm studies
 - ◆ Continuous flow with C₁₇ on sand: 2.5 mg N/L supported maximal degradation
 - Continuous flow with crude oil on sand:
 10 mg N/L supported maximal degradation
 - ◆ Tidal flow with crude oil on sand: 25 mg N/L supported maximal degradation

- Optimal nutrient concentration
 - Field studies
 - Prince William Sound: rates accelerated by 1.5 mg/L pore water nitrogen
 - Brest France: rates no longer limiting at nitrogen concentrations > 1.4 mg/L
 - Delaware: rates enhanced by maintenance of average 3-6 mg N/L in pore water
 - Thus, to enhance to near maximum rates, maintain 2-10 mg N/L in pore water

- Frequency of nutrient addition
 - Depends on tidal effects
 - Washout high at spring tides and high energy
 - Nutrient persistence longer at neap tides and low energy
- Methods of nutrient addition
 - 4 types of fertilizers:
 - Slow-release briquettes (problematic)
 - Dry, granular (easy and flexible)
 - Liquid oleophilic (easy but expensive)
 - Water-soluble inorganic solutions (complicated equipment)

- Sampling and Monitoring Plan
 - Important variables
 - Interstitial nutrients (very important)
 - Dissolved oxygen
 - Concentration of oil and its constituents (GC/MS)
 - Microbial activity (MPNs)
 - Environmental effects (ecotoxicity)
 - Others (temperature, pH)
 - Samples should cover entire depth of oil penetration
 - Statistical considerations

Analysis of biodegradation vs. physical loss


Ecosystem function analysis

- How To Measure Biodegradation
 - Must be able to distinguish between physical vs. biodegradative loss
 - Normalize to a conservative internal marker
 - Monitor changes in concentrations of individual oil constituents

- Physical vs. Biodegradative Loss
 - Distinguished by measuring biomarkers
 - Biomarkers (molecular fossils) found in oil are complex organic compounds:
 - Composed mostly of carbon and hydrogen
 - Show little or no change in structure from parent compound in living cells
 - Highly resistant to biodegradation

- Assumptions for an Effective Biomarker
 - Must be non-biodegradable
 - Must have same or similar volatility and solubility as other oil components
- General classes of biomarkers
 - Acyclic Diterpanes (pristane and phytane)
 - Cyclic Triterpanes (hopanes, steranes)

Structure of C $_{30}$ -17à(H), 21¬(H)-Hopane (C $_{30}$ H $_{52}$)

- Normalize Data to Biomarker
 - Measure concentrations of individual oil components, including hopane
 - Divide the concentrations of each component by the concentration of hopane
 - Losses will be adjusted for physical loss

- What If Oil Has No Biomarker?
 - Normalize to a less readily biodegradable constituent, such as C_2 -, C_3 -, or C_4 -chrysene
- Observe the relative rate of decline of alkanes
 - The higher the molecular weight, the slower the biodegradative loss
- Observe rate of decline of parent PAHs to alkylated homologs
 - Alkylated homologs will biodegrade slower

- Ecosystem Function Analysis
 - Microbial response (MPN)
 - Microtox (solid and liquid phase)
 - Algal solid phase bioassay
 - Daphnia survival
 - Amphipod survival
 - Gastropod (mollusc) survival
 - Fish bioassays

CONCLUSIONS

- Bioremediation a proven technology
- Primarily a polishing step
- Not considered a primary response technology
- Relatively slow process (weeks to months)
- Toxic hydrocarbons destroyed, not just moved to another environment
- Biggest challenge: maintaining nutrients in pore water
 - For wetlands, achieving aerobic conditions
- If background nutrients are high, may not need to use bioremediation for cleanup
 - Could still be considered for ecosystem recovery

CONCLUSIONS

- Bioaugmentation not likely to enhance biodegradation
- If impact area is high energy shoreline, bioremediation less likely to be effective
- Apply nutrients as dry granules at intermittent intervals
- Measure effectiveness by GC/MS, normalize oil components to hopane
- Conduct cadre of ecotoxicological assays to assess endpoints other than hydrocarbon concentrations